Current Transducer LA 205-S/SP11

For the electronic measurement of currents : DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

CE

Electrical data						
I _{PN}	Primary nominal r.m.s. current		200		A	
I _P	Primary current, measuring range		0 ± 300		Α	
Ř	Measuring resistance	$\mathbf{R}_{_{M\ min}}$	$\boldsymbol{R}_{_{M\;max}}$			
	with ± 24 V	@ ± 200 A _{max}	85	200	Ω	
		@ ± 300 A _{max}	85	110	Ω	
I _{SN}	Secondary nominal r.m.s. current		66.6		mΑ	
I _{sn} K _n	Conversion ratio		1:3000			
V	Supply voltage (± 20 %)		± 24		V	
	Current consumption		35 + I _s		mΑ	
I _c V _d	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6		kV	
۷	R.m.s rated voltage 1),	1625		V		
5		basic isolation	3250		V	

Accuracy - Dynamic performance data \mathbf{X}_{G} Overall accuracy @ I_{PN} , $T_A = 25^{\circ}C$ ± 0.8 **E**₁ Linearity < 0.1 Тур Max \mathbf{I}_{o} ± 0.15 Offset current @ $I_p = 0$, $T_a = 25^{\circ}C$ mΑ Residual current²⁾ @ $I_p = 0$, after an overload of 3 x I_p ± 0.40 mΑ ОМ Thermal drift of I - 25°C .. + 70°C $\pm 0.15 \pm 0.35$ mΑ I_{OT} Reaction time @ 10 % of I_{PN} < 500 ns t_{ra} Response time 3) @ 90 % of I_{PN} < 1 μs t. di/dt di/dt accurately followed > 100 A/µs Frequency bandwidth (- 3 dB) DC .. 100 kHz f **General data**

T _A	Ambient operating temperature	- 30 + 70	°C
Ts	Ambient storage temperature	- 40 + 85	°C
Rs	Secondary coil resistance @ $T_A = 70^{\circ}C$	70	Ω
m	Mass	170	g
	Standards 4)	EN 50178	

I_{PN} 200 A

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0
- · Patent pending.

Special features

- **K**_N = 1 : 3000
- $V_{c} = \pm 24 (\pm 20\%) V$
- $T_A = -30^{\circ}C .. + 70^{\circ}C$
- Potted

%

%

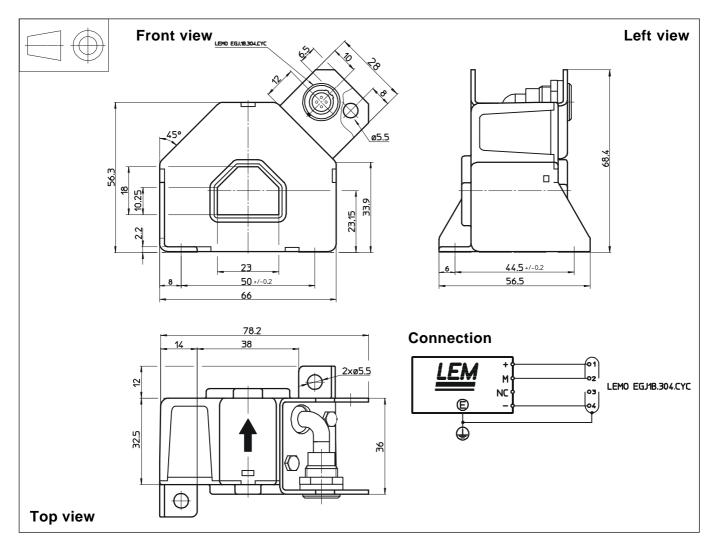
- · Connection to secondary circuit on LEMO EGJ.1B.304.CYC
- · Railway equipment.

Advantages

- Excellent accuracy
- · Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- · High immunity to external interference
- Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- · Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- · Power supplies for welding applications.


Notes : 1) Pollution class nr 2. With a non insulated primary bar which fills the through-hole

- ²⁾ The result of the coercive field of the magnetic circuit
- 3) With a di/dt of 100 A/µs

⁴⁾ A list of corresponding tests is available.

020909/2

Dimensions LA 205-S/SP11 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

- General tolerance
- Transducer fastening
 - Fastening torque
- Primary through-hole
- Connection of secondary

± 0.5 mm

2 holes \varnothing 5.5 mm 2 M5 steel screws

- 4 Nm or 2.95 Lb. Ft. 23 x 18 mm
- LEMO EGJ.1B.304.CYC

Remarks

- $\mathbf{I}_{_{\!\!S}}$ is positive when $\mathbf{I}_{_{\!\!P}}$ flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.